
Heroix

165 Bay State Drive, Braintree, MA 02184 USA

www.heroix.com, info@heroix.com

A White Paper

Guidelines for

Overcommitting VMware Resources

Heroix

165 Bay State Drive, Braintree, MA 02184 USA

www.heroix.com, info@heroix.com

Guidelines for Overcommitting VMware

Resources

Overcommitting resources in VMware means assigning more resources to Virtual Machines

(VMs) than physically exist on the host running the VMs. VMware will allow you to overcommit,

and manages host resources so that overcommitment works, but only up to a certain point.

Once you’ve overcommitted too many resources, performance starts to degrade for both VMs

and VMware hosts.

This paper will help you determine the extent of usable CPU and Memory overcommitment and

guide you through distributing limited physical resources across multiple VMs so that you can

get the most out of your host hardware. The topics we’ll cover are:

1) Managing CPU and Memory Allocations

2) Managing Memory Allocations

3) Managing CPU Allocations

4) Conclusions

Heroix

165 Bay State Drive, Braintree, MA 02184 USA

www.heroix.com, info@heroix.com

Managing CPU and Memory Allocations

When you create a VM in vSphere, the VM is allocated a specific number of processors and

amount of RAM. This can be a misleading in that it appears that the resources allocated to the

VM have been set aside for its exclusive use, which is not the case. The actual behavior is that

the CPU and memory allocated for the VM are upper limits, and the hypervisor provides

resources to the VM as they are needed.

For example, if a VM is assigned 4 GB RAM, but the memory usage on the Guest OS is never >

50%, then the VM will only use 2 GB of the host’s RAM, plus a small amount for management

overhead. If a program running on the Guest OS needs more memory, it will get the additional

memory it needs up to the maximum 4 GB.

One of the consequences of providing resources as needed rather than as allocated is that this

makes overallocation possible. As long as the resources actively in use across all the VMs at

any one time are less than the total resource capacity on the host, the hypervisor will be able to

distribute resources between the VMs and transparent to the Guest OS’s. But - if you push

overallocation past that point where the amount of resources actively in use on the VMs

exceeds the total amount of resources on the host, then performance will be severely degraded.

A Guest OS with 4 GB RAM will not be able to access memory it thinks it should have, and

processes or the Guest OS can crash.

This begs the question: if overallocation can cause problems, then why bother? The answer is

that not all VMs are created equal. For example, Virtual desktop VMs will underutilize resources

most of the time and if you’re facing pressure to provide as many desktops as possible, then

overallocation is the most efficient use of limited resources. But if you’re running a resource

intensive VM like a SQL server - the problems caused by performance degradation would

outweigh any benefit of maximizing resource usage.

That being said, how does VMware’s hypervisor manage CPU and memory? And, how can you

tell when you’re reaching the point where you’ve overallocated too much?

Heroix

165 Bay State Drive, Braintree, MA 02184 USA

www.heroix.com, info@heroix.com

Memory management

The basic terms for memory in VMware are:

● Host Memory

vCenter with 37GB consumed host memory out of 64 GB physical capacity

○ Capacity

The physical memory available on the host.

○ Consumed Memory

Total memory in use on the ESX host, which includes memory used by all

running VMs and VMware management overhead.

○ mem.minFree

The minimum free memory threshold used to trigger the hypervisor to reclaim

memory from VMs. The mem.minFree value is calculated as a percentage of

memory capacity, with 899MB reserved for the first 28GB of host memory, and

1% of memory for every GB beyond 28GB:

Host Memory mem.minFree

<= 28 GB 899 MB

>28 GB 899 + ((Memory Capacity) - 28 GB)* .01

For example, for a 64GB server:

mem.minFree = 899 M + (64GB – 28GB)*.01 = 899MB + 369MB = 1268 MB

Heroix

165 Bay State Drive, Braintree, MA 02184 USA

www.heroix.com, info@heroix.com

● VM Memory

 vSphere display of a VM’s Consumed Host and Active Guest Memory

○ Provisioned Memory

The amount of memory allocated to a VM plus the hypervisor overhead needed

to manage the VM. As mentioned previously: VMs start with only the memory

they require for startup, and add more as needed up to the amount of

provisioned memory.

○ Consumed Memory

Current level of memory consumption for a specified VM.

○ Active Guest Memory

Estimate of memory actively in use by the VM’s OS.

If a VM requires more memory, the hypervisor grants memory up to its allocated

amount. However, the VM does not signal to the hypervisor when it no longer

needs memory and has unused capacity, and even if VMware Tools are

installed, the hypervisor has no way of determining if there is unused memory on

the VM. To gauge how much memory is actively used by a VM, the hypervisor

checks a random sample of the VM’s allocated memory and calculates the

percent of the sample that is actively being accessed during the sampling period.

Heroix

165 Bay State Drive, Braintree, MA 02184 USA

www.heroix.com, info@heroix.com

How does VMware manage memory?

1. VMs can be configured with a memory reservation, which is memory reserved

for the exclusive use of the VM, and which must be available for the VM before it

can be powered on. This memory is not subject to reclamation by the hypervisor

if the host begins to run low on memory. The VM’s memory allocation can be

higher than its reserved memory, but the VM will always have at least its

reserved memory.

2. If a VM does not have a memory reservation, when it is powered on it receives

only the memory it needs from the hypervisor up to a maximum of the amount it

has been allocated. The metric for this is VM consumed memory.

3. VMs receive additional memory as needed from the hypervisor, up to the VM’s

allocated amount. This is seen as an increase in the VM’s consumed memory

metric.

4. The memory for all the VMs and their management overhead is the host’s

consumed memory. The memory “state” on the host is based on how much

free memory is available, ranging from High (preparing for memory reclamation)

to Low (severe memory shortage, performance is degraded).

The following chart displays the relationship between the mem.minFree threshold

and the reclamation techniques that are triggered by a memory shortage. Note

that as the host memory shortage increases in severity, the memory reclamation

has increasingly severe effects on the VM’s performance.

Host

consumed

memory vs.

mem.minFree

Memory

State

Memory Reclamation Techniques Potential Effect on

Performance

400% High Break down large memory pages None

100% Clear Break down large memory pages +

TPS

None

64% Soft TPS + Ballooning Swapping on VM Guest OS

32% Hard TPS + Memory Compression +

Swapping

Swapping on both VM Guest OS

and host OS

Heroix

165 Bay State Drive, Braintree, MA 02184 USA

www.heroix.com, info@heroix.com

16% Low Memory Compression + Swapping

+ Block VMs from allocating

memory

Swapping on both VM Guest OS

and host OS, VM Guest OS’s

could crash

5. In the High memory state, VMware prepares for a possible memory shortage.

The hypervisor will begin to break down large memory pages (2 MB) into smaller

memory pages (4 KB) and check the smaller pages for duplicates.

6. In the Clear state, the hypervisor uses Transparent Page Sharing (TPS) to de-

duplicate identical memory pages. Duplicate pages can be shared either within a

VM or between VMs. From the perspective of the VM, TPS is “transparent”: the

amount of memory the Guest OS sees is unchanged, but freeing up duplicate

pages reduces the amount of memory used on the host.

Note that in VMware 6.0 TPS is disabled by default between different VMs for

security considerations.

7. If TPS does not recover enough memory, and the host enters the Soft state, the

hypervisor uses ballooning to reclaim consumed memory that is not active.

Ballooning works as follows:

● The hypervisor contacts a balloon driver installed on the VM’s Guest OS

as part of VMware Tools. If the VM does not have VMware tools

installed, then ballooning won’t work.

● The hypervisor tells the balloon driver to request memory for a balloon

process on its Guest OS.

● The Guest OS allocates memory to the balloon process. That memory is

now unavailable for other processes on the guest OS.

● From the Guest OS perspective, it still has all the memory it did before,

but the portion used by the balloon process is no longer available. This

can cause performance degradation for the VM if it needs to swap

memory to keep other processes running.

● The balloon driver contacts the hypervisor with the details of the memory

that it has been allocated.

https://kb.vmware.com/kb/2080735

Heroix

165 Bay State Drive, Braintree, MA 02184 USA

www.heroix.com, info@heroix.com

● The hypervisor removes the ballooned memory from the VM, lowering

host memory consumed by that VM.

● If memory problems are resolved on the host, memory can be returned to

the VMs by “deflating” the balloon memory and re-allocating it to the VM.

8. If memory reaches the Hard state, the hypervisor starts swapping and looks for

memory pages to compress by at least 50%. At this point, performance is

severely degraded not only for the VM Guest OS’s, but for the host OS.

9. At a Low memory state the additional measure of blocking VM Guest OS’s from

accessing memory that has been allocated but not yet consumed is introduced,

which could potentially cause Guest OS’s to crash.

VMware Memory Metrics to Monitor

Data Collected for Metric Threshold

Host Consumed Memory 4 * mem.minFree

VM (by hypervisor) Active Guest Memory Check vs OS Used Memory

Guest OS Free Memory OS Free Memory baseline

Guest OS Paging OS Paging Baseline

Recommendations for VM Memory

● Adjust allocated memory based on observed Guest OS memory metrics. For

Guest OS’s running memory intensive applications use observed Guest OS

memory baselines in conjunction with the application vendor’s memory

recommendations.

● Check Guest OS memory use through memory reports that collect data from

Guest OS performance metrics.

Heroix

165 Bay State Drive, Braintree, MA 02184 USA

www.heroix.com, info@heroix.com

● Use memory reservations for Guest OS’s running memory intensive applications

(e.g. databases).

● Ballooning uses the hypervisor’s Active Guest Memory estimate to determine

how much memory can be reclaimed from a VM without unduly affecting Guest

OS performance. If the Active Guest Memory estimate is significantly smaller

than the VM’s actual memory use, then ballooning could lead to paging on the

Guest OS, degrading its performance. If Active Guest Memory is being

underestimated for a VM, then either configure a memory reservation to protect

the memory, or make sure that host memory is not overcommitted.

● Monitor Host Consumed memory on hosts where memory has been over

allocated. If free memory is less than mem.minFree, memory reclamation can be

observed as unexpected drops in Host Consumed as memory is reclaimed from

the VMs, or as low free memory on the Guest OS as ballooning locks Guest OS

resources.

● While ballooning is occurring, monitor free memory and paging on the VM Guest

OS’s. Move VMs to hosts with more memory before ballooning causes

performance degradation on the VMs.

● If ballooning does not resolve low memory on the host, move or power down

VMs before reaching the Hard memory state (32% of mem.minFree). Memory

compression and swapping cause severe performance degradation.

CPU Management

The way the hypervisor distributes CPU is very different from the way it distributes memory.

Host memory is a fixed quantity while CPU resources are queued, therefore over allocated CPU

will cause increased wait times rather than shortages.

The concepts and terms used to discuss VMware CPU management are:

● Socket

The socket is the connection on the host’s motherboard for the CPU processor. VMware

is licensed based on the number of sockets in use.

Heroix

165 Bay State Drive, Braintree, MA 02184 USA

www.heroix.com, info@heroix.com

● Cores - Physical CPUs (pCPU)

Each CPU processor on the system is made up of one or more cores. The core is the

component that executes the instructions sent to the CPU and is referred to as a

physical CPU, or pCPU in vSphere.

● Hyperthreading - Virtual CPUs (vCPU)

CPU processing requests are queued and sent to the pCPU, and if the request at the

front of the queue has to wait for resources, then the processor is idle while it’s waiting.

Hyperthreading adds a second instruction queue for a pCPU that can be scheduled in

conjunction with the first queue to minimize wait times for both queues.

A core that uses hyperthreading is considered to have 2 “logical” processors per each

pCPU, although in practice the performance gain from hyperthreading is closer to 30%

than it is to double. In VMware, logical processors are seen as “virtual” processors, or

vCPU.

● Processor Speed

How quickly a CPU can process requests is influenced by the processor’s speed.

Processor speed is usually measured in cycles/sec, or Hz, and current processors run at

a multiple of GHz (or 1 billion cycles/sec).

vSphere will display the cumulative CPU speed over all the processors, and will display

usage for VMs in terms of the number of CPU clock cycles they have used.

● NUMA (Non-Uniform Memory Architecture)

Before NUMA was developed, computers were designed so that each processor

accessed all the system memory using the same system bus (i.e. system path). When

multiple processors tried to access memory at the same time, there was contention

between the CPUs that slowed down processing.

NUMA addressed this contention problem by breaking the system up into nodes, where

each node had one or more processors which are associated with a portion of memory.

This allows CPUs to access memory on their local node over a local bus without having

to contend with other CPUs. Basically, it’s the difference between merging onto a

highway onramp during a traffic jam versus pulling onto less busy side street.

https://www.nersc.gov/users/computational-systems/edison/performance-and-optimization/hyper-threading/

Heroix

165 Bay State Drive, Braintree, MA 02184 USA

www.heroix.com, info@heroix.com

Note that NUMA works best when the CPUs access local memory on their local NUMA

node, but they can access memory on other nodes, albeit less quickly. Hypervisors will

generally try to avoid “Wide VMs”, which occur when CPU and memory resources used

by a VM are on multiple NUMA nodes.

However, if the number of processors allocated to a VM requires that it run as a wide

VM, then the hypervisor will try to allocate vCPU and memory resources symmetrically.

For example, if a NUMA node has 8 vCPUs, and you create a VM that is allocated 12

vCPUs, the hypervisor will split the CPU allocation across 2 NUMA nodes of 6 vCPU

each.

● Virtual NUMA (vNUMA)

Applications such as Microsoft SQL are NUMA aware, and can use NUMA’s localized

memory to improve performance. If SQL is installed on physical hardware, it can detect

that NUMA is available and take advantage of the architecture. However, because VMs

are built based on virtualized hardware created by the hypervisor they do not have direct

access to the underlying NUMA architecture.

To allow NUMA aware applications to take advantage of NUMA while they’re running in

VMs, VMware provides a virtualized NUMA (vNUMA) environment. This architecture

assigns the VM processors and memory across multiple NUMA nodes and presents a

virtualized NUMA architecture to the VM’s operating system. In our previous example of

a wide VM, a SQL server using vNUMA would see 2 NUMA nodes, as opposed to

seeing 12 processors without vNUMA.

● Co-stop

VMware schedules all the vCPUs for a VM at the same time. If all the allocated

vCPUs for a given VM are not available at the same time, then the VM will be in

a state of "co-stop" until the host can co-schedule all vCPUs. In its simplest form

co-stop indicates the amount time after the first vCPU is available until the

remaining vCPUs are available for the VM to run.

● CPU Ready

VM CPU Ready is a measure of the time a VM has to wait for CPU resources

from the host. When overallocation of CPU resources becomes severe the CPU

ready value will increase.

Heroix

165 Bay State Drive, Braintree, MA 02184 USA

www.heroix.com, info@heroix.com

VMware CPU Metrics to Monitor

Data Collected for Metric Threshold: alert if:

Host CPU utilization > 80% (if > 90%, reaching overload condition)

VM CPU Ready > 5%

VM Co-Stop > 3%

Guest OS CPU utilization > 80% (if > 90%, reaching overload condition)

Recommendations for VM CPU

● vCPU overallocation up to 3 x VM CPU’s per host CPU usually doesn’t cause

performance issues

It does depend on the function of the VMs running on a host, but in general you can

allocate 3 times more CPUs than exist on the host without seeing performance issues.

However, higher ratios will begin to introduce performance issues.

● Don’t allocate more vCPU’s than you need.

When creating a VM, start with the number of CPUs recommended for the Guest OS or

for a specific application, and only increase the number of CPUs if the baseline value for

Guest OS CPU utilization indicates that more CPU is needed. Remember, more vCPU’s

can also mean more co-stop time as the VM waits for all the allocated processors to be

available, so more CPUs aren’t necessarily better.

● Consider NUMA architecture when creating VMs

NUMA information is not available through the vSphere client, so you will need to know

your host’s architecture. If NUMA is in use, keep the number of vCPU assigned to a VM

to those within a NUMA node if possible.

Heroix

165 Bay State Drive, Braintree, MA 02184 USA

www.heroix.com, info@heroix.com

Note that the hypervisor does not take hyperthreading into account when determining

how many vCPUs are available in a node - it only counts physical processors (pCPU).

The settings can be overridden using the advanced VM property numa.vmcpu.preferHT

to True.

● Take advantage of vNUMA

vNUMA is available as of Virtual Machine Version 8, and enabled by default for VMs with

more than 8 vCPUs. If a VM needs more memory than is available within its vNUMA

nodes but doesn’t need more vCPU, you can use advanced VM configuration settings to

adjust the number of vCPUs.

● VMs that communicate frequently can cause NUMA imbalance

The hypervisor will position VMs that communicate frequently with each other on the

same NUMA node to try to optimize I/O. However, this could lead to a load imbalance

with too many VMs on one NUMA node, and not enough on another. This positioning

can be disabled by changing the advanced Numa.LocalityWeightActionAffinity setting to

0.

● Move VMs to a different host if VM CPU Ready or host CPU utilization is too high

If host CPU utilization is > 80%, there is the potential that CPU ready values for VMs will

begin to increase. Plan to move VMs to different hosts before host CPU utilization

reaches 90% or if CPU Ready values for VMs is > 5%.

● Move VMs to different hosts or reduce the number of allocated vCPUs if Co-Stop is high

If co-stop is > 3%, then the VM is waiting for all its assigned vCPUs to be available. If

you cannot reduce the number of vCPUs allocated to the VM, then move the VM to a

host that has less competition for resources.

https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.resmgmt.doc/GUID-17B629DE-75DF-4C23-B831-08107007FBB9.html
https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.resmgmt.doc/GUID-3E956FB5-8ACB-42C3-B068-664989C3FF44.html
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2097369
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2097369

Heroix

165 Bay State Drive, Braintree, MA 02184 USA

www.heroix.com, info@heroix.com

Conclusions

● Overcommitting memory can make the best use of your resources, but monitor the

host’s consumed memory and the effect of memory reclamation on the performance of

your VM Guest OS’s. If you have VMs running memory sensitive applications, make

sure you allocate enough memory for them, protect them from memory reclamation, or, if

necessary, run them on hosts which do not overallocate memory.

● Overcommitting CPU allows you to maximize use of host CPU resources, but make sure

to monitor overcommitted host CPU use, CPU Ready and Co-stop percentages.

Consider NUMA architecture and the effect of co-stop waits when creating VMs with

multiple vCPUs..

About Heroix

Heroix has a 30+-year history of proven monitoring solutions, with products running on tens of

thousands of critical servers. It offers fast, easy, affordable application and networking

monitoring solution for physical and virtual environments. Download Longitude Now and you’ll

be monitoring and planning in just 10 minutes.

Heroix believes that the information in this document is accurate as of its publication date; such information is subject to change

without notice. Heroix is not responsible for any inadvertent errors.

Heroix, Heroix Longitude and their corresponding logos are registered trademarks of Heroix. All other company and product names

mentioned are used only for identification purposes and may be trademarks or registered trademarks of their respective companies.

Copyright © 2017 Heroix. All rights reserved.

https://go.heroix.com/longitude-free-trial
http://www.heroix.com/download.asp

