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Guidelines for Overcommitting VMware 

Resources 

 

Overcommitting resources in VMware means assigning more resources to Virtual Machines 

(VMs) than physically exist on the host running the VMs.  VMware will allow you to overcommit, 

and manages host resources so that overcommitment works, but only up to a certain point.  

Once you’ve overcommitted too many resources, performance starts to degrade for both VMs 

and VMware hosts. 

 

This paper will help you determine the extent of usable CPU and Memory overcommitment and 

guide you through distributing limited physical resources across multiple VMs so that you can 

get the most out of your host hardware.  The topics we’ll cover are: 

 

1) Managing CPU and Memory Allocations 

2) Managing Memory Allocations 

3) Managing CPU Allocations 

4) Conclusions  
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Managing CPU and Memory Allocations 

 

When you create a VM in vSphere, the VM is allocated a specific number of processors and 

amount of RAM.  This can be a misleading in that it appears that the resources allocated to the 

VM have been set aside for its exclusive use, which is not the case.  The actual behavior is that 

the CPU and memory allocated for the VM are upper limits, and the hypervisor provides 

resources to the VM as they are needed.   

 

For example, if a VM is assigned 4 GB RAM, but the memory usage on the Guest OS is never > 

50%, then the VM will only use 2 GB of the host’s RAM, plus a small amount for management 

overhead.  If a program running on the Guest OS needs more memory, it will get the additional 

memory it needs up to the maximum 4 GB.  

 

One of the consequences of providing resources as needed rather than as allocated is that this 

makes overallocation possible. As long as the resources actively in use across all the VMs at 

any one time are less than the total resource capacity on the host, the hypervisor will be able to 

distribute resources between the VMs and transparent to the Guest OS’s.  But - if you push 

overallocation past that point where the amount of resources actively in use on the VMs 

exceeds the total amount of resources on the host, then performance will be severely degraded.  

A Guest OS with 4 GB RAM will not be able to access memory it thinks it should have, and 

processes or the Guest OS can crash. 

 

This begs the question: if overallocation can cause problems, then why bother?  The answer is 

that not all VMs are created equal.  For example, Virtual desktop VMs will underutilize resources 

most of the time and if you’re facing pressure to provide as many desktops as possible, then 

overallocation is the most efficient use of limited resources.  But if you’re running a resource 

intensive VM like a SQL server - the problems caused by performance degradation would 

outweigh any benefit of maximizing resource usage.   

 

That being said, how does VMware’s hypervisor manage CPU and memory? And, how can you 

tell when you’re reaching the point where you’ve overallocated too much?  
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Memory management 
 

The basic terms for memory in VMware are: 

 

● Host Memory 

 

 
vCenter with 37GB consumed host memory out of 64 GB physical capacity 

 

○ Capacity   

The physical memory available on the host. 

 

○ Consumed Memory 

Total memory in use on the ESX host, which includes memory used by all 

running VMs and VMware management overhead. 

 

○ mem.minFree 

The minimum free memory threshold used to trigger the hypervisor to reclaim 

memory from VMs. The mem.minFree value is calculated as a percentage of 

memory capacity, with 899MB reserved for the first 28GB of host memory, and 

1% of memory for every GB beyond 28GB: 

 

Host Memory mem.minFree 

<= 28 GB 899 MB 

>28 GB 899 + ((Memory Capacity) - 28 GB)* .01  

 

For example, for a 64GB server: 

 

mem.minFree = 899 M + (64GB – 28GB)*.01 = 899MB + 369MB = 1268 MB 
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● VM Memory  

 

 

  
 vSphere display of a VM’s Consumed Host and Active Guest Memory 

 

 

○ Provisioned Memory  

The amount of memory allocated to a VM plus the hypervisor overhead needed 

to manage the VM. As mentioned previously: VMs start with only the memory 

they require for startup, and add more as needed up to the amount of 

provisioned memory.  

 

○ Consumed Memory 

Current level of memory consumption for a specified VM.   

 

○ Active Guest Memory  

Estimate of memory actively in use by the VM’s OS. 

 

If a VM requires more memory, the hypervisor grants memory up to its allocated 

amount.  However, the VM does not signal to the hypervisor when it no longer 

needs memory and has unused capacity, and even if VMware Tools are 

installed, the hypervisor has no way of determining if there is unused memory on 

the VM.  To gauge how much memory is actively used by a VM, the hypervisor 

checks a random sample of the VM’s allocated memory and calculates the 

percent of the sample that is actively being accessed during the sampling period. 
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How does VMware manage memory? 

 

1. VMs can be configured with a memory reservation, which is memory reserved 

for the exclusive use of the VM, and which must be available for the VM before it 

can be powered on.  This memory is not subject to reclamation by the hypervisor 

if the host begins to run low on memory.  The VM’s memory allocation can be 

higher than its reserved memory, but the VM will always have at least its 

reserved memory. 

 

2. If a VM does not have a memory reservation, when it is powered on it receives 

only the memory it needs from the hypervisor up to a maximum of the amount it 

has been allocated.  The metric for this is VM consumed memory. 

 

3. VMs receive additional memory as needed from the hypervisor, up to the VM’s 

allocated amount.  This is seen as an increase in the VM’s consumed memory 

metric. 

 

4. The memory for all the VMs and their management overhead is the host’s 

consumed memory.  The memory “state” on the host is based on how much 

free memory is available, ranging from High (preparing for memory reclamation) 

to Low (severe memory shortage, performance is degraded). 

 

The following chart displays the relationship between the mem.minFree threshold 

and the reclamation techniques that are triggered by a memory shortage.  Note 

that as the host memory shortage increases in severity, the memory reclamation 

has increasingly severe effects on the VM’s performance. 

 

Host 

consumed 

memory vs. 

mem.minFree 

Memory 

State 

Memory Reclamation Techniques Potential Effect on 

Performance 

400% High Break down large memory pages None 

100% Clear Break down large memory pages + 

TPS 

None 

64% Soft TPS + Ballooning Swapping on VM Guest OS 

32% Hard TPS + Memory Compression + 

Swapping 

Swapping on both VM Guest OS 

and host OS 
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16% Low Memory Compression + Swapping 

+ Block VMs from allocating 

memory 

Swapping on both VM Guest OS 

and host OS, VM Guest OS’s 

could crash 

 

 

5. In the High memory state, VMware prepares for a possible memory shortage.  

The hypervisor will begin to break down large memory pages (2 MB) into smaller 

memory pages (4 KB) and check the smaller pages for duplicates.   

 

 

6. In the Clear state, the hypervisor uses Transparent Page Sharing (TPS) to de-

duplicate identical memory pages.  Duplicate pages can be shared either within a 

VM or between VMs.  From the perspective of the VM, TPS is “transparent”: the 

amount of memory the Guest OS sees is unchanged, but freeing up duplicate 

pages reduces the amount of memory used on the host.   

 

Note that in VMware 6.0 TPS is disabled by default between different VMs for 

security considerations. 

 

 

7. If TPS does not recover enough memory, and the host enters the Soft state, the 

hypervisor uses ballooning to reclaim consumed memory that is not active.  

Ballooning works as follows: 

 

● The hypervisor contacts a balloon driver installed on the VM’s Guest OS 

as part of VMware Tools.  If the VM does not have VMware tools 

installed, then ballooning won’t work. 

 

● The hypervisor tells the balloon driver to request memory for a balloon 

process on its Guest OS. 

 

● The Guest OS allocates memory to the balloon process. That memory is 

now unavailable for other processes on the guest OS.   

 

● From the Guest OS perspective, it still has all the memory it did before, 

but the portion used by the balloon process is no longer available. This 

can cause performance degradation for the VM if it needs to swap 

memory to keep other processes running. 

 

● The balloon driver contacts the hypervisor with the details of the memory 

that it has been allocated. 

 

https://kb.vmware.com/kb/2080735
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● The hypervisor removes the ballooned memory from the VM, lowering 

host memory consumed by that VM. 

 

● If memory problems are resolved on the host, memory can be returned to 

the VMs by “deflating” the balloon memory and re-allocating it to the VM. 

 

 

8. If memory reaches the Hard state, the hypervisor starts swapping and looks for 

memory pages to compress by at least 50%.  At this point, performance is 

severely degraded not only for the VM Guest OS’s, but for the host OS. 

 

 

9. At a Low memory state the additional measure of blocking VM Guest OS’s from 

accessing memory that has been allocated but not yet consumed is introduced, 

which could potentially cause Guest OS’s to crash. 

 

 

 

VMware Memory Metrics to Monitor 

 

 

Data Collected for Metric Threshold 

Host Consumed Memory 4 * mem.minFree 

VM (by hypervisor) Active Guest Memory Check vs OS Used Memory 

Guest OS Free Memory OS Free Memory baseline 

Guest OS Paging OS Paging Baseline 

 

 

Recommendations for VM Memory 

 

● Adjust allocated memory based on observed Guest OS memory metrics.  For 

Guest OS’s running memory intensive applications use observed Guest OS 

memory baselines in conjunction with the application vendor’s memory 

recommendations. 

 

● Check Guest OS memory use through memory reports that collect data from 

Guest OS performance metrics. 
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● Use memory reservations for Guest OS’s running memory intensive applications 

(e.g. databases). 

 

● Ballooning uses the hypervisor’s Active Guest Memory estimate to determine 

how much memory can be reclaimed from a VM without unduly affecting Guest 

OS performance.  If the Active Guest Memory estimate is significantly smaller 

than the VM’s actual memory use, then ballooning could lead to paging on the 

Guest OS, degrading its performance. If Active Guest Memory is being 

underestimated for a VM, then either configure a memory reservation to protect 

the memory, or make sure that host memory is not overcommitted. 

 

● Monitor Host Consumed memory on hosts where memory has been over 

allocated.  If free memory is less than mem.minFree, memory reclamation can be 

observed as unexpected drops in Host Consumed as memory is reclaimed from 

the VMs, or as low free memory on the Guest OS as ballooning locks Guest OS 

resources. 

 

● While ballooning is occurring, monitor free memory and paging on the VM Guest 

OS’s. Move VMs to hosts with more memory before ballooning causes 

performance degradation on the VMs. 

 

● If ballooning does not resolve low memory on the host, move or power down 

VMs before reaching the Hard memory state (32% of mem.minFree). Memory 

compression and swapping cause severe performance degradation. 

 

 

 

CPU Management 
 

The way the hypervisor distributes CPU is very different from the way it distributes memory.  

Host memory is a fixed quantity while CPU resources are queued, therefore over allocated CPU 

will cause increased wait times rather than shortages. 

 

The concepts and terms used to discuss VMware CPU management are: 

 

● Socket 

 

The socket is the connection on the host’s motherboard for the CPU processor.  VMware 

is licensed based on the number of sockets in use. 
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● Cores - Physical CPUs (pCPU) 

 

Each CPU processor on the system is made up of one or more cores.  The core is the 

component that executes the instructions sent to the CPU and is referred to as a 

physical CPU, or pCPU in vSphere. 

 

 

● Hyperthreading - Virtual CPUs (vCPU) 

 

CPU processing requests are queued and sent to the pCPU, and if the request at the 

front of the queue has to wait for resources, then the processor is idle while it’s waiting.  

Hyperthreading adds a second instruction queue for a pCPU that can be scheduled in 

conjunction with the first queue to minimize wait times for both queues.   

 

A core that uses hyperthreading is considered to have 2 “logical” processors per each 

pCPU, although in practice the performance gain from hyperthreading is closer to 30% 

than it is to double.  In VMware, logical processors are seen as “virtual” processors, or 

vCPU. 

 

 

● Processor Speed 

 

How quickly a CPU can process requests is influenced by the processor’s speed.  

Processor speed is usually measured in cycles/sec, or Hz, and current processors run at 

a multiple of GHz (or 1 billion cycles/sec).  

 

vSphere will display the cumulative CPU speed over all the processors, and will display 

usage for VMs in terms of the number of CPU clock cycles they have used. 

 

 

● NUMA (Non-Uniform Memory Architecture) 

 

Before NUMA was developed, computers were designed so that each processor 

accessed all the system memory using the same system bus (i.e. system path).  When 

multiple processors tried to access memory at the same time, there was contention 

between the CPUs that slowed down processing. 

 

NUMA addressed this contention problem by breaking the system up into nodes, where 

each node had one or more processors which are associated with a portion of memory.  

This allows CPUs to access memory on their local node over a local bus without having 

to contend with other CPUs.  Basically, it’s the difference between merging onto a 

highway onramp during a traffic jam versus pulling onto less busy side street. 

 

https://www.nersc.gov/users/computational-systems/edison/performance-and-optimization/hyper-threading/
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Note that NUMA works best when the CPUs access local memory on their local NUMA 

node, but they can access memory on other nodes, albeit less quickly.  Hypervisors will 

generally try to avoid “Wide VMs”, which occur when CPU and memory resources used 

by a VM are on multiple NUMA nodes.   

 

However, if the number of processors allocated to a VM requires that it run as a wide 

VM, then the hypervisor will try to allocate vCPU and memory resources symmetrically.  

For example, if a NUMA node has 8 vCPUs, and you create a VM that is allocated 12 

vCPUs, the hypervisor will split the CPU allocation across 2 NUMA nodes of 6 vCPU 

each.   

 

 

● Virtual NUMA (vNUMA) 

 

Applications such as Microsoft SQL are NUMA aware, and can use NUMA’s localized 

memory to improve performance.  If SQL is installed on physical hardware, it can detect 

that NUMA is available and take advantage of the architecture.  However, because VMs 

are built based on virtualized hardware created by the hypervisor they do not have direct 

access to the underlying NUMA architecture. 

 

To allow NUMA aware applications to take advantage of NUMA while they’re running in 

VMs, VMware provides a virtualized NUMA (vNUMA) environment.  This architecture 

assigns the VM processors and memory across multiple NUMA nodes and presents a 

virtualized NUMA architecture to the VM’s operating system.  In our previous example of 

a wide VM, a SQL server using vNUMA would see 2 NUMA nodes, as opposed to 

seeing 12 processors without vNUMA. 

 

 

● Co-stop 

 

VMware schedules all the vCPUs for a VM at the same time. If all the allocated 

vCPUs for a given VM are not available at the same time, then the VM will be in 

a state of "co-stop" until the host can co-schedule all vCPUs. In its simplest form 

co-stop indicates the amount time after the first vCPU is available until the 

remaining vCPUs are available for the VM to run.  

 

 

● CPU Ready 

 

VM CPU Ready is a measure of the time a VM has to wait for CPU resources 

from the host. When overallocation of CPU resources becomes severe the CPU 

ready value will increase. 
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VMware CPU Metrics to Monitor 

 

 

Data Collected for Metric Threshold: alert if: 

Host CPU utilization > 80%  (if > 90%, reaching overload condition) 

VM  CPU Ready > 5% 

VM Co-Stop > 3% 

Guest OS CPU utilization > 80%  (if > 90%, reaching overload condition) 

 

 

 

 

Recommendations for VM CPU 

 

● vCPU overallocation up to 3 x VM CPU’s per host CPU usually doesn’t cause 

performance issues 

 

It does depend on the function of the VMs running on a host, but in general you can 

allocate 3 times more CPUs than exist on the host without seeing performance issues.  

However, higher ratios will begin to introduce performance issues. 

 

 

● Don’t allocate more vCPU’s than you need.   

 

When creating a VM, start with the number of CPUs recommended for the Guest OS or 

for a specific application, and only increase the number of CPUs if the baseline value for 

Guest OS CPU utilization indicates that more CPU is needed.  Remember, more vCPU’s 

can also mean more co-stop time as the VM waits for all the allocated processors to be 

available, so more CPUs aren’t necessarily better. 

 

 

● Consider NUMA architecture when creating VMs 

 

NUMA information is not available through the vSphere client, so you will need to know 

your host’s architecture.  If NUMA is in use, keep the number of vCPU assigned to a VM 

to those within a NUMA node if possible.   
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Note that the hypervisor does not take hyperthreading into account when determining 

how many vCPUs are available in a node - it only counts physical processors (pCPU). 

The settings can be overridden using the advanced VM property numa.vmcpu.preferHT 

to True. 

 

 

● Take advantage of vNUMA  

 

vNUMA is available as of Virtual Machine Version 8, and enabled by default for VMs with 

more than 8 vCPUs.  If a VM needs more memory than is available within its vNUMA 

nodes but doesn’t need more vCPU, you can use advanced VM configuration settings to 

adjust the number of vCPUs.  

 

 

● VMs that communicate frequently can cause NUMA imbalance 

 

The hypervisor will position VMs that communicate frequently with each other on the 

same NUMA node to try to optimize I/O.  However, this could lead to a load imbalance 

with too many VMs on one NUMA node, and not enough on another.  This positioning 

can be disabled by changing the advanced Numa.LocalityWeightActionAffinity setting to 

0. 

 

 

● Move VMs to a different host if VM CPU Ready or host CPU utilization is too high 

 

If host CPU utilization is > 80%, there is the potential that CPU ready values for VMs will 

begin to increase.  Plan to move VMs to different hosts before host CPU utilization 

reaches 90% or if CPU Ready values for VMs is > 5%. 

 

 

● Move VMs to different hosts or reduce the number of allocated vCPUs if Co-Stop is high 

 

If co-stop is > 3%, then the VM is waiting for all its assigned vCPUs to be available.  If 

you cannot reduce the number of vCPUs allocated to the VM, then move the VM to a 

host that has less competition for resources. 

 

  

https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.resmgmt.doc/GUID-17B629DE-75DF-4C23-B831-08107007FBB9.html
https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.resmgmt.doc/GUID-3E956FB5-8ACB-42C3-B068-664989C3FF44.html
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2097369
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2097369
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Conclusions 

 
 

● Overcommitting memory can make the best use of your resources, but monitor the 

host’s consumed memory and the effect of memory reclamation on the performance of 

your VM Guest OS’s. If you have VMs running memory sensitive applications, make 

sure you allocate enough memory for them, protect them from memory reclamation, or, if 

necessary, run them on hosts which do not overallocate memory. 

 

● Overcommitting CPU allows you to maximize use of host CPU resources, but make sure 

to monitor overcommitted host CPU use, CPU Ready and Co-stop percentages. 

Consider NUMA architecture and the effect of co-stop waits when creating VMs with 

multiple vCPUs.. 
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